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An approach of dynamic control for suppressing external disturbance to variable
thickness beam plates with sensors and actuators of piezoelectric layers on/in the structures
is proposed in this paper using the scaling function transform of the Daubechies wavelet
theory for approximation of functions. By means of the generalized Gaussian integral to the
scaling function transform, an expression of identi"cation of de#ection con"guration of
the structures is explicitly formulated by the electric charge/current signals measured from
the piezoelectric sensors. After a control law of negative feedback of the identi"ed de#ection
and velocity signals is chosen, the wavelet Galerkin method or wavelet weighted residual
method is used to determine control voltage applied on the piezoelectric actuators. Due to
that the scaling function transform is like a low-pass "lter which can automatically "lter out
high order signals of vibration or disturbance from the measurement and the controller
employed here, this control approach does not lead to the undesired phenomenon of control
instability that is often generated in a control system and caused by the spilling over of high
order signals from interaction between the measurement and the controller if no special
techniques is used in the control system. Finally, a numerical simulation is carried out to
show the e$ciency of the proposed approach. ( 2000 Academic Press
1. INTRODUCTION

With extensive applications of piezoelectric materials in engineering, the importance for
research of piezoelectric materials has been considerably intensi"ed in both engineering and
theory. One application using piezoelectricity is to design an intelligent structure with
control system of piezoelectric sensors and actuators to suppress an external disturbance in,
e.g., space structures, antennas, rotor systems, and high-precision systems, etc. (see
references [1}8], for example). In this area, most researchers concentrated their attention on
how to design an e$cient control system with a measurement sub-system of sensing and
a controller sub-system of actuating by a mathematical program. For example, Lee [7]
proposed an approach using continuously distributed piezoelectric sensors/actuators, while
Sun et al. [8] established another approach using distributed piezoelectric elements on the
basis of the technique of modal analysis of vibrations. The development of a "nite element
approach to piezoelectric structures was introduced in reference [1]. It is found that the
0022-460X/00/430395#16 $35.00/0 ( 2000 Academic Press
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phenomenon of spilling over of high order signals can automatically be avoided in the
system with continuously distributed piezoelectric sensors/actuators [7]. Its applications in
vibration control are, however, still limited to very simple structures because it is too
di$cult to practically implement an e!ective sensor/actuator distribution for a complex
structure and because the e!ectiveness of a sensor/actuator distribution highly depends on
the vibration mode to be controlled. For the control system with distributed piezoelectric
elements, identi"cation of de#ection of structures is performed by a system of linear
algebraic equations that determine those modal co-ordinates employed in the modal
analysis. However, it is not generally guaranteed that the coe$cient matrix of the system is
non-singular, and hence there is possibility in the system to fail an identi"cation of
deformation of structures such that the control system would lose its function.

The wavelet theory is one of the relative recent and powerful mathematical tools [9}11].
It has been found that the wavelet theory can be used for decomposition and reconstruction
of a signal process, approximation of a function, and solving a boundary-value problem, etc.
[11]. Due to that most of wavelet theories are generated by a numerical program, it is found
that the accuracy of approximation of a function mainly relies upon a numerical approach
of integral in the decomposition of the scaling/wavelet function transform.

In this paper, we will propose an approach of vibration control to variable thickness
beam-type plates with piezoelectric sensors and actuators by the aid of the Daubechies
wavelet theory. Once the piezoelectric layers on the beam plates are discretized at the nodes
of the wavelet theory, "rst of all, an explicit expression of identifying de#ection state of the
plates are formulated by the electric charge/current measured from the piezoelectric sensors.
By taking a control law of negative feedback of the identi"ed signals of de#ection and its
velocity, secondly, the wavelet Galerkin/or weighted residual method is used to determine
the distribution of control voltage applied on piezoelectric actuators. Finally, a numeric
program of this control approach is developed to simulate the control process of the plates.

2. GOVERNING EQUATIONS

Consider a beam-type plate of length ¸, unit width and smoothly variable thickness. And
assume that the piezoelectric layers of constant thickness h

p
, such as PVDF, are attached

on/in the top and bottom surfaces of the plate as sensors and actuators (see Figure 1).
Taking the Cartesian co-ordinate system in which the co-ordinate plane oxy is coincident
with the mid-plane of the plate and the z-axis is along the transverse direction of the plates,
we denote by h*

b
(x)3C1[0, ¸] the variation part of thickness of the plate. That is, the

thickness of plate is h
0
#h*

b
(x) in which h

0
is a referenced thickness. After the plate is

considered to be symmetric about its mid-plane geometrically, the co-ordinates of surface of
the plate and layers in the z direction are measured by
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According to the laminated theory of piezoelectric plates [7], we can write the equivalent
density of mass o, the equivalent thickness h, and the equivalent de#ection rigidity D as
follows:

oh"
3
+
i/1

o
i
(z

i
!z

i~1
), D"

1

3

3
+
i/1

>
i

1!k2
i

(z3
i
!z3

i~1
) (3, 4)

in which o
1
"o

3
,>

1
">

3
and k

1
"k

3
are the density of mass, the Young modulus, and the

Poison ratio of the piezoelectric layers respectively; o
2
,>

2
and k

2
are the density of mass, the



Figure 1. Schematic drawing of a variable thickness cantilever beam plate with piezoelectric sensors and
actuators.
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Young modulus, and the Poison ratio of the plate respectively. Once we substitute
equations (1) and (2) into equations (3) and (4), one can "nd that the quantities o, h and
D can be expressed by

D(x)"D
0
#D*(x), o (x)h (x)"o

0
h
0
#o* (x)h* (x), (5)

where o
0
h
0

and D
0

are the parts of equations (3) and (4) when h*
b
(x),0, while o* (x)

h*(x)"o(x)h(x)!o
0
h
0

and D* (x)"D(x)!D
0

are mainly related to h*
b
(x). After that, we

can write the de#ection equation of the variable thickness plates with piezoelectric layers in
the form
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L2w
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with boundary conditions of, e.g., a cantilevered beam plate as shown in Figure 1,
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Here, w"w(x, t) represents the de#ection function of plate at instant t; f (x, t) is the
control force of equivalent transverse force generated from the control voltage applied on
piezoelectric actuators. Let <"< (x, t) the distribution of control voltage. As same as done
in Lee [7], we have the relation of the control force to <(x, t):

f (x, t)"!e
31

L2M[r
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(x)]<(x, t)N

Lx2
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in which r
a
(x)"r

a0
#r*

a
(x) is the z-co-ordinate of piezoelectric actuator measured from the

mid-plane at point x, while r
a0

is the part of r
a
(x), i.e., the z-co-ordinate of the actuator at the

reference point of h
0
; and e

31
represents the piezoelectric constant of the actuators or

sensors.
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Let X
k
"[x

k~1
, x

k
] (k"1, 2,2, M) be the regions occupied by piezoelectric elements.

When the plate is de#ected with w"w(x, t) at instant t, the electric charge q
k
(t) and electric

current I
k
(t) measured from the kth piezoelectric sensor can be formulated by Lee [7]
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Here, r
s
(x)"r

s0
#r*

s
(x) denotes the distance from the mid-plane of plate to the

piezoelectric sensors at point x, while r
s0

is the z-co-ordinate of the sensor at the reference
point of h

0
.

In order to simplify the discussions later, here, we introduce the following dimensionless
quantities:
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Then equations (6)}(11) are non-dimensionlized in the form
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When the plate is disturbed by de#ection w (x, t) and velocity wR (x, t), the electric charges
q
k
and electric currents I

k
will be generated on the piezoelectric sensors, which are given by

equations (17) and (18). The applied control voltage across the piezoelectric actuators are
dependent on a control law employed and the measurable signals. That is to say, an
appreciate control law have to be taken to feed the measurable signals to the piezoelectric
actuators through applying voltages <(x, t) across the actuators, which leads to the change
of de#ection similar to the action of an equivalent transverse force of equation (16). In the
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following sections, we will introduce an approach of the control including the identi"cation
of de#ection of the plates in terms of the measurable charges and currents on the sensors,
and the determination of control voltage distribution on the basis of the Daubechies
wavelet.

From here on, we use only the dimensionless variables and parameters in the theoretical
analysis. For simplicity, we will drop the bar over each dimensionless quantity. For
example, we denote w6 by w, etc.

3. ESSENTIALITY OF WAVELET THEORY EMPLOYED

In this section, for the convenience of discussion, we brie#y cite some elemental results of
the Daubechies wavelet which we will use. The scaling function /

N
(x) of the Daubechies

wavelet is de"ned in the support region [0, 2N!1] in which N is an integer no less than 2,
and /

N
(x) is numerically generated at the dyadic points ( j/2n) ( j"0, 1,2 , (2N!1)2n) (see

reference [9]). After that, the base scaling functions /
n,k

(x) are de"ned by

/
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N
(2nx!k), n, k integers. (19)

For a function f (x)3¸2(R), the scaling function transform with n-level can be written as
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in which the decomposition coe$cients a
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Here, k
1

and k
2

are integers dependent upon the region of function f (x). For example, if f (x)
is de"ned in [0, 1], we have k

1
"1!2N and k

2
"2n. It has been known that the scaling

function transform of equation (20) functions like a low-pass "lter. When n is su$ciently
large, the scaling function transform is approximately equal to f (x) itself (see reference [9]),
that is
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It could be found that the accuracy of the approximation is dependent on the numerical
integral employed in equation (21). In order to enhance the accuracy, Wang and Zhou [12]
proposed a generalized Gaussian integration with weighted functions /

N
(x) or /

n,k
(x) in the

form
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, which are independent of function f (x), stand for the weighted coe$cients

and the nodes of the Gaussian integration respectively. According to equation (18), (21) and
(23), and noting the support region of /
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Further, the approximation of f (x) is formulated in terms of /
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(x) in the form
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For the most simple form that i"1, i.e., the algebraic accuracy of order 3, the weighted
coe$cients A

0
, A

1
and the node x*

1
of the generalized Gaussian integration given in

equation (23) have the following approximated expressions:
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In this case, equation (23) is reduced into

f (x)+2~n@2
k2
+

k/k1

f A
x*
1
#k

2n B/
n,k

(x). (27)

It is shown in reference [12] that the error of the generalized Gaussian integration to
equation (21) for i"1 decreases with 2~(4`1@2)n.

4. IDENTIFICATION OF DEFLECTION FROM SENSING

Take the elements of piezoelectric sensors and actuators to be coincident with the
subregions of the wavelet theory, that is, X
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H(x
k
, t)"

k
+

m/1

q
m
(t) (29)

and

LH(x, t)

Lx
"![1#r*

s
(x)]

L2w
Lx2

(30)

or

L2w
Lx2

"!

1

1#r*
s
(x)

LH(x, t)

Lx
. (31)
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Further, we have
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in which b
s
(x)"dr*

s
(x)/dx, and w (0, t) and Lw(0, t)/Lx are the integral constants to be

determined by the boundary conditions of the beam plates. For example, for the
cantilevered beam plate shown in Figure 1, we recall the boundary condition of equation
(14) w (0, t)"Lw(0, t)/Lx"0. In this special case, equation (33) can be simpli"ed by
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and applying equation (27) to equation (35), we can write
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Then translating the co-ordinate x and using equation (19), we obtain
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Substitution of equations (38) and (39) into equation (33) leads to
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Di!erentiation of equation (40) with respect to time variable t yields
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in which
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Here, [x*
1
] is the integer part of x*

1
. Noting that ([x*

1
]#k)/2n is of the dyadic points, one can

determine H(([x*
1
]#k)/2n, t) and H (([x*

1
]#k)/2n, t) at instant t using equations (42) and

(43) in terms of the measurable electric charges q
k
(t) and electric current I

k
(t) in the sensing

elements as long as we set q
k
"I

k
"0 for k(0, or k'2n. Hence, to determine the

de#ection w (x, t) and velocity wR (x, t), one needs to evaluate the integrals in equations (40)
and (41), or equivalently, :z

0
/
N
(y) dy and :z

0
:z{
0
/
N
(y) dydz@. At an integer point z"k, the

integrals can be determined precisely using the method of connection coe.cients along with
the properties of the scaling function /

N
(x) (see references [9, 11] ). To evaluate the integrals

in equations (40) and (41) at z"2nx#x*
1
![x*

1
]!k which are not integer points for

x"m/2n, we further approximate the integrals using an interpolating method and the
values of integrals :z

0
/
N
(y) dy and :z

0
:z{
0
/

N
(y) dydz@ at integers: z"m. Through this

procedure, equations (40) and (41) leads to the determination of the de#ection and velocity
as the sensing elements, w(x

k
, t) and wR (x

k
, t) (k"0, 1, 2,2, 2n) in terms of the measurable

electric charges q
k
(t) and the measurable electric currents I

k
(t) respectively. We will call

these quantities of w(x, t) and wR (x, t) which are determined by equations (40) and (41) the
measured de#ection and the measured velocity of the plates respectively. In order to distinct
them from those corresponding quantities of practical deformation of plate, from here on,
we denote by w* (x, t) and wR *(x, t) to replace w (x, t) and wR (x, t) in equations (40) and (41)
respectively.

5. CONTROL VOLTAGE APPLIED ON ACTUATORS

Here, a control law of negative feedback of the measured de#ection and velocity signals is
employed to determine the distribution of applied voltage across piezoelectric actuators.
That is

f (x, t)"!G
1
w* (x, t)!G

2
wR * (x, t), (44)

where G
1
'0 and G

2
'0 are the gain constants. The physical meaning of the control law of

equation (44) implies that the "rst and the second terms are, respectively, corresponding to
the increasing of rigidity and damping to the controlled structure through the control law.
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Substituting equation (44) into equation (16), we get the governing equation for determining
the control voltage <(x, t) in the form

L2M[1#r*
a
(x)]< (x, t)N

Lx2
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w* (x, t)#G

2
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In order to give a distribution of control voltage <(x, t), without loss of generality, we can
employ the following boundary conditions to the di!erentiation equation (45)

<(0, t)"<(1, t)"0 (46)

which implies that zero voltage is applied at the ends of plate. It is evident that these
conditions can be realized in practice. Thus, equations (45) and (46) constitute the
boundary-value problem for distribution of applied control voltage across piezoelectric
actuators following the measured signals of w*(x, t) and wR * (x, t). In order to get it, we will
apply the wavelet Galerkin method/or weighted residual method (see reference [11] ) to "nd
the solution of the boundary-value problem of equations (45) and (46). From the expression
of equation (27), one can write
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k
(t)"wR * ((x*

1
#k)/2n, t).

Substituting equations (47)}(49) into equation (45), and taking the base scaling functions of
Haar's wavelet (see references [10, 11] ) as the weighted functions of the weighted residual
method to the resulting equation, we get

k2
+

k/k1

2n[/@
N
( j!k)!/@

N
( j!k!1)]C1#r*

a A
x*
1
#k

2n BD<k (t)

"

k2
+

k/k1

1

2n
[G

1
w*
k
(t)#G

2
wR *

k
(t)][/g

N
( j!k)!/g

N
( j!k!1)]. (50)

Here, j"k
1
#1, k

1
#2,2, k

2
!1, and the superscript prime && @ '' represents the

di!erentiation with respect to variable x; and /g
N
(x),:x

~=
/

N
(x) dx. The values of /

N
@(x)

and /g
N
(x) at integer points can be got by the method of connection coe.cients (see

references [9, 11]). Substitution of equation (47) into equation (46) leads to

k2
+

k/k1

<
k
(t)/

N
(!k)"0,

k2
+

k/k1

<
k
(t)/

N
(2n!k)"0 (51, 52)

since

<(x, t)"2~n@2
2n

+
k/1~2N

<
k
(t)/

n,k
(x). (53)
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can be gained by applying equation (27) to function<(x, t). Equations (50)}(52) are a system
of algebraic equations with unknowns <

k
(t). By solving this system of algebraic equations

for <
k
(t), we get a continuous distribution of control voltage of equation (53). Since the

applied voltage across a piezoelectric layer is a constant without varying with x in practice,
we take the control voltage applied on the kth piezoelectric actuator,<]

k
(t), to be the average

voltage within its corresponding interval: [x
k~1

, x
k
], for k"1, 2,2 , 2n, i.e.,

<]
k
(t)"2nP

k@2n

(k~1)@2n

<(x, t) dt"
k2
+

k/k1

<
j
(t) [/g

N
(k!j )!/g

N
(k!j!1)]. (54)

Till now, the design of the control system of beam plates with piezoelectric sensors and
actuators is completed by the wavelet theory.

It should be noted that this control approach based on the wavelet theory does not yield
the phenomenon of control instability generated by the spilling over from those measurable
signals and the actuation of those control voltage because the high order components of
deformation beyond the main lobe of frequency band of /

n,k
(x) are almost auto-"ltered by

the expansions of equations (47)}(49) and (53) due to the characteristic of low-pass "lter
of the scaling function transform (see reference [11]). It is numerically found that the
deformation of the plates within the main lobe of frequency band of /

n,k
(x) can be

controlled using this approach.

6. NUMERICAL SIMULATIONS AND DISCUSSIONS (CASE STUDY)

6.1. PROGRAM OF NUMERICAL SIMULATIONS

The main steps of calculation taken in the numerical simulations are as follows:
(1) Identi,cation of deformed state of plate at time t: According to equations (42) and (43),

the values of H (x, t) and HQ (x, t) at the dyadic points are obtained from the measurable
signals of q

k
(t) and I

k
(t)"qR

k
(t) on the piezoelectric sensors once the plate is deformed.

Then, the measured de#ection w*(x, t) and the measured velocity wR *(x, t) can be
determined from equations (40) and (41) respectively.

(2) Control voltage applied on piezoelectric actuators: After the gains G
1

and G
2

are set,
the control voltage on piezoelectric actuators is applied by the manner of output
values of equations (53) and (54) after the boundary-value problem of equations (45)
and (46) are solved by the wavelet Galerkin method or weighted residual method, i.e.,
to solve a system of algebraic equations (50)}(52) instead.

(3) Equivalent transverse force and deformation simulation to the plate: According to the
model of equivalent bending deformation of a plate attached piezoelectric actuators
on its surfaces [1, 4], the action of control voltage on piezoelectric actuators of the
deformed plate can be equivalently replaced by a set of bending moments or couples.
After that, from the theory of plates, one can give the equivalent transverse forces
exerted on the mid-plane of plate. By means of the "nite di!erence method for spatial
part, and the Wilson-h method for time part of the boundary-value problem of
equations (13)}(15) with unknown de#ection w (x, t), we can gain the deformation
state of w (x, t) and wR (x, t) at the node or dyadic points of plate to the next instant
t#Dt, i.e., w (x

k
, t#Dt) and wR (x

k
, t#Dt), in which Dt is an increment step of time

variable.
(4) Response of controlled process: According to equations (17) and (18), electric charge

q
k
(t#Dt) and electric current I

k
(t#Dt) are measured from the piezoelectric sensors

after w (x, t#Dt) and wR (x, t#Dt) were known by the above steps. Then, the
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measurements q
k
(t) and I

k
(t) at instant t in the step (1) are, respectively, replaced by

q (t#Dt) and I
k
(t#Dt), and repeating steps (1)}(3), we can get a response of

de#ection of the controlled plate after it is excited by a disturbance either an initial
de#ection or an initial velocity or both of them at the initial instant t"0.

6.2. NUMERICAL EXAMPLES

In order to show the e$ciency and ability of the control program proposed in previous
sections, "rstly, a comparison of the numerical results from the program of this paper and
those from the method of modal analysis in reference [8] to the controlled cantilevered
beam-plate with constant thickness given in reference [8] is plotted in Figure 2 where the
Figure 2. A comparison of tip-de#ection responses to a cantilevered beam plate with constant thickness
controlled by distributed piezoelectric sensors and actuators. (a) Response of de#ection given in reference [8]. (b)
Response of de#ection in this paper. (c) Responses of control voltage applied on actuators in this paper.



TABLE 1

Parameters of materials and geometry in case study

> o Thickness Length Width e
31Materials (GPa) (kg/m3) k (mm) (mm) (mm) N/(Vm)

Stainless steel 210 8000 0.3 2 1 300 20
(left) (right)

PVDF 2 1780 0.3 0.12 300 20 6]10~2

Figure 3. A comparison of de#ections with free vibration modals and their identi"cations from equation (40)
(N"5, n"3). Ex."exact; Id."identi"ed: f*f Ex. modal 1; #*# Id. modal 1; m*m Ex. modal 2; j*j Id.
modal 2; f*f Ex. modal 3; .*. Id. modal 3; h*h Ex. modal 4; s*s Id. modal.
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responses of de#ection at the free-end in the control progress is displayed. Here, Figure 2(a)
shows the response given by reference [8] to the controlled plate with seven piezoelectric
sensors and actuators, while Figure 2(b) exhibits one obtained by the control program of
this paper to the same controlled structure and same initial impulse of 5]10~4 Ns on its
free-end, to which eight piezoelectric sensors and actuators (n"3) and the control
parameters G

1
"0, and G

2
"1)0 are employed. It is found that the duration of the control

response from the initial disturbance to almost zero (DwD(10~6m) is about 7 s in reference
[8] while it is about 3)5 s in this paper. In Figure 2(c), the responses of applied voltage on the
piezoelectric actuators corresponding to the control of Figure 2(b) are displayed. From it, it
is found that the maximum applied voltage is less than 300 V, while it is given in reference
[8] to be 280 V. Thus, these results tell us that the control approach proposed in this paper
is e$ciency. After that, a numerical simulation to a cantilevered beam plate with linearly
variable thickness as shown in Figure 1 is carried out as a case study of the problems
considered in this paper, whose parameters of materials and geometry are listed in Table 1.

Figure 3 displays a comparison of a deformed de#ection with its identi"ed one from
equation (40) for N"5 and n"3, which exhibits a good accuracy to the identi"cation. In
the following simulations, we select the parameter N"5 in the scaling function transform.
The responses of the control voltage on each piezoelectric layer and the de#ection at the free



Figure 4. Responses of de#ection at free end of the controlled cantilevered beam plate (G
1
"0; G

2
"0)10).

(a) n"2 (corresponding to four piezoelectric elements). (b) n"3 (corresponding to eight piezoelectric elements).
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end of the plate, which is excited by an initial disturbance to the plate under a concentrated
load of 0)03 N at the free end, are plotted in Figures 4 and 5 for the control parameters
G

1
"0 and G

2
"0)1. In Figures 4(a) and 5(a) are the responses for the case of resolution

level n"2, while Figures 4(b) and 5(b) are those for n"3. From these results, one can "nd
that the duration of suppressing the disturbance into almost zero for n"3 is shorter than
that for n"2, while the control voltages applied on the piezoelectric actuators for these two
cases are at the same level, when the control parameters G

1
and G

2
are taken one and the

same. When we adjust the control parameter G
2

for the case of n"2, the numerical
simulations indicate that when G

2
increases up to G

2
"0)2, the duration decreases near to

that for the case of G
2
"0)1 and n"3, except that the control voltage doubly increases for

the former case. Here, we should remind readers to note that there is a relation between the
number, say S, of piezoelectric sensors/actuators and the resolution level n, i.e., S"2n. Next,
the simulations for the initial disturbances with each one vibration modal among the former



Figure 5. Responses of control voltage applied on piezoelectric actuators (G
1
"0; G

2
"0)10). (a) n"2

(corresponding to four piezoelectric actuators). (b) n"3 (corresponding to eight piezoelectric actuators).
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eight modals are performed for the case n"3. The numerical results show that whether or
not the disturbance is suppressed by the control system is dependent upon the piezoelectric
elements employed. That is, the number of order of the disturbance which may be
suppressed by the control programs may be equal to that of the piezoelectric elements 2n.
This is to say that when a disturbance is within the vibration modals of former 2n order, the



Figure 6. Responses of de#ection at free end of the controlled plate disturbed by high order free vibrations
(n"3; G

1
"0; G

2
"0)10). (a) Order 2. (b) Order 4. (c) Order 6. (d) Order 8.
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disturbance may be suppressed by the control system with piezoelectric sensors/actuators
2n. This conclusion can also shown by analysis of energy spectrum to which one can get that
the spectrum of those suppressible disturbances with order m is within that of the base
scaling functions with n-resolution level. Figure 6 plots the responses of the end de#ection of
the control plate with these initial disturbances of high order vibration modals, e.g., orders
2, 4, 6, and 8 when n"3. It is clearly found that no higher vibration is excited in this control
system when a relative low vibration modal is suppressed.
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